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ABSTRACT 

Several results concerning the connectivity of infinite random graphs are 
considered. A necessary sufficient condition for a zero-one law to hold is 
given when the edges arc chosen independently. Some specific examples are 
treated including one where the vertex set is N and the probability that an 
edge joining i to j is present depends only on J i - j I. 

The random graphs that will be considered here are formed by taking a fixed 
vertex set Vand then deciding for each possible edge {u, v} whether or not the 
edge is actually in the random graph F(to) by tossing independent coins, one 
for each possible edge, with success probability Pu,. The nature of the random 
graph so formed will depend of course on the nature of these probabilities 
{p,,,}. We will be concerned with one of the simplest questions one can ask 
about F(to) - -  namely is it connected or not. If the vertex set V is finite 
the probability of this event is usually some number between 0 and 1 which is 
not easy to evaluate. We work throughout with V infinite when we might 
expect some zero-one laws to hold. Indeed our first main result is a rather 
simple necessary and sufficient condition for the validity of  a zero-one law for 
this question. The condition is formulated directly in terms of the p~,'s and 
asserts that for any partition of the vertex set into non-empty sets A, B we 
have that 

aEA 
bEB 

which is equivalent of course to the assertion that for any A, B as above 
Prob{A is connected to B} = 1. 
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Next we take X = N and suppose that P,v depends only on I u - v I, say 

Puv = Plu-~l. Here our main result is that if 

P n = + o c ,  and g . c . d . { n ' p n > 0 ) = l ,  
n z l  

then with probability one the graph is connected. This result for V = Z was 

obtained several years ago by Grimmett,  Marstrand and M. Keane. Their 

proof didn't work for N although it did extend to analogous results for Z 2 

where the method we use in §2 breaks down. 

Finally we consider an inhomogenous case on N that was suggested by Lester 

Dubins. Here we introduce a parameter 2 > 0 and define 

= A 1 .  
Pu Ma i , j  

A heuristic argument suggests that for ;t > 1 the graph should be connected 

while for 2 < 1 the graph should be disconnected. (L. Dubins' original 

question was the case ;t = l.) We can establish the first assertion, but instead of  

the second can only show the disconnectedness for ~. < ¼. The appearance of  a 

critical phenomenon of this type is reminiscent of  the situation when covering 

the circles with random arcs (see [S]) but we weren't able to find any deeper 
connections. The study here was sparked by some talks given by M. Keane at 
MSRI in 1983-4 and we thank him for introducing us to this fascinating 

subject and for several discussions on the ideas in this paper. 

§1. The zero-one law 

Here is a simple example that shows that the zero-one law is not universally 

valid: 

p~2=~; p~j--0 a l l j > 3 ;  pij--1 a l l 2 < i < j .  

Clearly p(F(to) is connected) = ½, since all hinges upon whether or not { 1 } is 

connected to the rest of  the vertices. More generally such a situation can arise 

whenever there is a partition of N into two sets A, B with 

0 < p(A is connected to B) < 1. 

Since the possibility p(A is connected to B) = 0 is anyway a triviality for the 

connectedness question we may take for a necessary condition that p(A is 
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connected to B) = 1 for any partition A U B = N. By the usual Borel-Cantelli 

lemma this is equivalent to 

aEA 
bEB 

We see that this is a necessary condition for F(og) to be connected with 

probability one. The next theorem says that this is sufficient. 

then 

THEOREM 1. I f  for any partition of  N into sets A, B we have 

aEA 
bEB 

p(1-'(co) is connected)E {0, 1 }. 

Moreover, i f  p(F(co) is connected)= 0 then with probability one F(co)has 

infinitely many components. 

We shall denote by L (a, b) the event that a and b are linked, so that our basic 

model is that the events L(a, b) are independent events and p(L(a, b)) = Pab. 
By C(a, b) we shall denote the event that a and b are connected by some finite 

chain of links. Note that the event "the graph F(to) has infinitely many 
components" is a tail event with respect to the collection of independent events 

L(a, b) and so has probability either zero or one. To prove the theorem it 

therefore suffices to show that the event 

(,) "the graph F(co) has preciesly n components" 

has probability zero for all n > 2. 

LEMMA 1. I f  for some n > 2, ( . )  has positive probability then 

(**) "the graph F(o9) has precisely two components" 

has positive probability. 

PROOF. Observe that for any a and bp(C(a, b)) > 0, since for fixed a, ifA 

denotes the set of  such b's then clearly A is not empty and ifA is not all of  N, 

the partition A, N \A would contradict the hypotheses of the theorem. Next 

consider all possible n tuples (el ,  e2 . . . . .  e n) and for each consider the event 

E(et . . . . .  e,) that there are precisely n components and each ei is in a distinct 
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one. Since there are only countably many such n-tuples, for some choice we 

must have 

p(E(e~ . . . .  , e.)) > O. 

Now by the observation above, there is some chain from el to e2, say e I = f 0 ,  

f~ . . . . .  fk ---- e2 such that p~. ~ +, > 0 for 0 < i < k. For some io < k if we modify 

the event E(el . . . .  , en) by connecting all pairs f ,  f~+~ for 0 < i < i0 we will 

reduce the number of components by exactly one with positive probability. 

Thus the fact that (.) has positive probability for some n implies that also 
(.) with n -  1 has positive probability which by induction proves the 

lemma. El 

We assume, therefore, that for some fixed u, v ~ N the event 

E(u, v) 

= {F(og) has precisely two components, u and v are in distinct components } 

has positive probability and proceed to derive a contradiction. By the lemma 

and the preceding remarks this will prove the theorem. Since the events 

L(a, b) generate the a-algebra, it follows that for n sufficiently large there is 

some choice of either L(a, b) or 0(a, b) (the complement of L(a, b), namely 
the event that the link (a, b) is open) for all a < b _-< n such that i fS  denotes the 

intersection of all these events, 

(*) p(E(u, v) I S) > .999. 

Fix i ~ N ,  and notice that the events C(i, u), C(i, v) conditioned on S are 

monotonic events so that by T. Harris' correlation inequality ([K] p. 72) 

p(C(i, u) and C(i, v)[S)  ->_ p(C(i, u) l S)p(C(i, v) l S). 

Thus if both p(C(i, u) l S) >. l  and p(C(i, v) [ S) >. l  we would get 

p(C(u, v) I S ) >  .01 contradicting (,). Thus at least one of them is at most .  I. 

Again by (,) we have that the probability that i is connected to either u or v 

given S is at least .9 so that we have for each i one of  the following two 

possibilities: 

I p(C(i, u) lS) ~ .i, (I) [p(C(i, v) I S) > .8, 



Vol. 62, 1988 RANDOM GRAPHS 261 

o r  

"p(C(i, u) [S )  >_- .8, 
(II) 

p(C(i ,  v)[S)<=.l .  

Define a partition of N by putting i EA if (I) holds and i ~ B  if (II) holds. 
Consider now a list of all possible pairs (a~, bi), 1 _-< i < + oo where ai CA, 
b; E B  and S doesn't specify whether L(a~, b~) or 0(ai, bi) holds. By the basic 
hypothesis of the theorem almost every oJ belongs to at least one event L (a;, b~) 
and we denote by 

Eg = {09 : 09 ~ L ( a~ , bi ), 09 ~ O( aj, bj ) for a l l j  < i}. 

Since the events E~ are disjoint we conclude that 

; (E ,  I S) = 1. 
i=1 

Let k be the first index such that 

k 

~, p(E~ I S) ~ ½ and ~ p(E, I S)>½. 
i=1 i = k  

Since O(al, bl) M O(a2, b2) N . . .  t~ O(ai, bi) = Ui+ l Ej we have 

p(O(at, bt) N . . .  A O(aj, bj) [S) _>- ½ fo r j  < k 

and so (.) implies that 

p(E(u,  v) [ 0(a~, b~) N - . .  M 0(aj, bj) M S ) >  .998. 

Clearly 

p(C(aj+,, u) I O(a,, b,) N . . .  N O(aj, bj) N S) < p(C(aj+,, u ) [ S )  _-< .1 

so that by the argument that led to (I) and (II) we have 

p(C(aj+~, v) [ O(a,, b,) N - - -  (~ O(aj, bj) M S) >_- .8 

and thus 

Similarly 

p<C(aj+~, v) I E j+, n S) _-> .8. 

p<C(b~÷,, u) I e j+, n s )  >_- .8 



262 s. KALIKOW AND B. WEISS Isr. J. Math. 

and so 

p(C(aj+,, v) n C(bj+~, u) I Ej+~ N S) _-> .6. 

However, given Ej+~, C(aj+t, v) and C(bj+~, u) imply C(u, v), and thus we 

conclude that 

p(C(u, v) lEj+t n S)_>_.6 

for all j < k. Since trivially 

p(C(u, v) [ E~ O S) >.6 

we obtain 

p(C(u, v) I Ei O > .6 

and since p(U~ Ei ] S) > ½ we finally obtain 

p(C(u, v) lS) > .3 

contradicting (,) and proving the theorem. 

§2. Homogeneous random graphs on N 

In this section we analyze the connectivity properties of random graphs on N 

when the probability of joining i to j depends only on l i - J l .  There is a 

dichotomy, depending upon whether these probabilities form a convergent or 

a divergent series. In the first case the assumptions of the theorem in §1 do not 
apply so that while it is completely trivial to see that there is a positive 

probability that the graph is not connected, a slight new argument is 

required to show that this probability, in fact, equals one. Let us denote 

by p, the probability that i and j are connected for l i - j l  = n. Then 
for any k the event Ek = "the vertex k is isolated in F(og)" has probability 

at least 

p = [[ (1 - pD 2. 
1 

I fp  is positive, then it is not too hard to see that whenever n~ < n2 < • • • < n~ 

are sufficiently far apart the events E.,, En~ . . . .  , E.. are nearly independent so 

that 
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p(E.,  U E., U . . .  U E.,,) 

is approximately 1 - (1 - p)N and thus the probability of  U~ ° E, is equal 

to one which means that the graph F(oJ) is not connected with probability 
one. 

The remainder of this section is devoted to the proof of  the following 

theorem which deals with the remaining case. 

THEOREM 2. I f  Z~ ° p, = + oo, 1 = g.c.d.{n" p, > 0} and Pij = p[ i  - j [  

then with probability one F(oJ) (the random graph formed by joining i , j  E N 

independently with probabilities pij) is connected. 

We shall need an elementary lemma on nonnegative sequences which we 
leave as an exercise: 

LEMMA 2. I f  {a, >_--0}~ °, then for any e > 0  there exist infinitely many 

indices n for which a, _ ~ - a. < e. 

Denote by F,(o~) the random graph on {0, 1 , . . . ,  n} obtained by perform- 

ing the experiments which determine whether or not i is linked to j for all 

0 _-< i < j  _-< n. Let X,(to) denote the number of components of F,(to) and 
denote 

a. = E(X . ) .  

Fix some small e > 0 and then by the lemma find an n so that a. _ ~ - a. < e. 
Now 

e > a . _ ~  - an = E ( X . _ ~  - X n )  = E ( ( X . _ ~  - X . )  + )  - E ( ( X . _ ~  - X . ) - )  

and ( X n - ~ -  X . ) -  is positive only when X. > X.- i .  For this to happen "n" 

must be an isolated vertex in F.(og) and this event has probability 

II;=~ (1 - p~). Thus if n is large enough we can certainly assert that 

(*)  E( (Xn_,  - X . )  +) < 2e. 

Next observe that if(X._ ~ - X.)  + is positive it must equal one or more and 
so (.) implies that with probability at least 1 - 2e we have X. _ ~ = X..  By the 

homogeneity we can interchange the role of 0 and n, so if F ._  ~ denotes the 

random graph on { 1, 2 , . . . ,  n } and X._  t the number of  its components we 

have the same statement concerning X._ ~ and X..  What this means is that, if 

we look at the component of  F.(to) that contains 0 and cut all the links to 0, 

then the component less {0} remains connected. Finally fix i0 with p,0 > 0 and 

suppose that n is large compared to i0. Set 
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En = {in F,(oJ), 0 is connected to some vertex 

different from i0, and i0 is not connected 

to 0 by any path that avoids the link 0 - to}. 

Since ZF Pk = + ~ ,  the first condition in E, has probability that approaches 

one as n --- ~ .  By the independence, we have 

p(E, and the link 0 - i0 is closed) = p~. p(E,). 

We have just seen that this last event has probability at most 2e and there- 

fore p(E , )~O.  This means that with probability one 0 is connected to any 

io with p~ > 0. Our arithmetic hypothesis on the p, 's  now concludes the 

proof. [] 

In case the arithmetic hypothesis fails to hold, we get a finite number 

of components consisting of the various residue classes modulo the 

g.c.d.{n : p, > 0}. 

§3. An inhomogeneous random graph 

Once again the vertex set is N and now with 2 > 0 a positive parameter, we 

define 

Pij0.) = max{ 1, Mmax{i , j}} .  

The original question raised by Lester Dubins was: is the graph connected 

with probability one when 2 = 1 ? Our first result will be that if  2 > 1 then 

almost surely the graph is connected. For this we will need one of  the results of  

Erd6s and Renyi in their fundamental study of  finite random graphs ([ER]). 
The result we need appears there as part of  a very detailed analysis of  the 

behavior of random graphs over a wide range of the parameters. For the 

reader's convenience we will include a short direct proof of a less precise 

result (which suffices for our purposes). We follow a suggestion made by Eli 

Shamir. 

TrlEOR~M 1 (ErdOs-Renyi). I f  p > 1, then there is some positive constant 7 

(for example ? -~ (p - l)/3p) such that 

lim Prob{in the random graph on n vertices where each edge 
n ~ o o  

is present independently with probability p/n there is 

a connected component o f  size at least 7n } = t. 
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PROOF. Choose 7 > 0 so that p(1 - 2),) > 1. We will estimate the prob- 

ability in question by a dynamic process in which we sequentially choose to 

reveal more and more of the random connections in the graph. To begin with 
we fix some set of  vertices of size M and reveal the connections between these 

vertices. Fix some e > 0 and some a0 which will be specified shortly. If M is 

large enough then, with probability (1 - t), there will be a connected compo- 

nent here of  size at least ao. 

Now we look at all the possible connections between this component (say the 

largest one in the random graph on M vertices) and the remaining n - M  

vertices. Denote by A~ the set of  vertices that are connected to this component 

and let al denote the size o f  Ai .  If a0 + a~ >_- ),n we stop. Otherwise we look now 

at the connections between A 1 and the remaining n - M - a~ vertices. Denote 

the set of  vertices so connected by A2, and a2 = [A2[. I fao + ax + a2 > 7n we  

stop, otherwise we continue as before and define Ak, ak = Ak. Naturally ifA~ is 

empty we can't go beyond the first step and, in general, if  at any stage Ak = 

the procedure stops. What we shall see is that, with probability close to one, the 

procedure continues until we see a component of  size ->_ ~,n. 

Le t  m = n -  M -  a~ . . . . .  ak. Naturally m is a random variable and 

depends upon k but we suppress this dependence. For each of  the new m- 
vertices let Xj ( j  = 1, 2 , . . . ,  m) be a random variable that equals 1 if  the j - th  

vertex is connected to some element of  Ak and 0 if the j - th  vertex is not so 

connected. Then clearly the Xj are independent identically distributed random 
variables and 

ak+t----- ~ Xj 
j = l  

so that given A~ . . . . .  Ak; ak + l is a binomiaUy distributed random variable with 
parameter 

( P r o b ( X j - - 1 ) = l -  1 -  _ - - - -  
n 

(to simplify the writing we drop the higher-order terms which are negligible). 
Thus 

m 
E(ak  +l . . . .  , A ~ ) ~ a k .  P - - .  

n 
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Now ifn is large enough so that M / n  < 7, there is some fixed constant c > 1 so 

that 

m 
p - - > c .  

n 

Furthermore, a direct estimation of  the relevant binomial coefficient using 

Stirling's formula gives the existence of  some c5 > 0 so that 

. . . . .  

It follows that with probability at least (1 - e -~k) 

It is now clear that ifao is chosen large enough (the above calculation is valid of  

course for al as well) with probability at least 1 - e, the Ak'S grow by a fixed 

multiple so that the procedure continues until a component of  size at least 7n is 

seen. [] 

Fix now 4 > I, and set B = 24/(4 - 1). For n = 1, 2 , . . .  consider the block 

of  integers between B" and B ~ ÷1; there are B~(B - 1) integers there and the 

probability that any two are connected is at least 4/B ~ ÷ '. Thus, comparing 

with the ErdOs-Renyi situation we see that with p = (1 + 2)/2 we have a 

lower bound on the probability that there is a connected component within the 

block (B n, B ~ ÷ ') whose size is some constant yB ~ ÷ 1. Fix now the vertices 1 and 

ko, and consider only those blocks with B ~ > k0. Now we check to see whether 

or not both 1 and ko are connected to the large component in (B ~, Bn+l). 

The preceding analysis shows that there is some positive constant 8 > 0 such 

that 

Pr{bOth 1 and ko are connected to the large component in (B n, Bn+l)} > 8. 

But clearly these events are independent and therefore by the Borel-Cantelli 

lemma we have that 1 is connected to k0 with probability 1. Thus we have 

proved: 

THEOREM 2. For 4 > 1, the random graph formed on the vertex set 

{1, 2 , . . .  }, with the edge ( i , j )  present, (independently) with probability 

max(l,  A/max(i, j)), is connected with probability 1. 
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For 2 < 1 the situation is that the probability that n is connected to a vertex 

< n is less than 1, and this suggests that there are no infinite connected chains. 

However we haven't been able to make this argument precise and the best we 
can do is show that with probability 1 the graph is not connected when 2 < 1. 

For this we need an elementary estimate on the norm of  the matrix A = (aij)l,~ 
defined by 

0 i f j  = 1 

ao---- 1 
i f j  v ~ 1 

max(/ , j )  

acting on 12. It's a little easier to estimate the norm of A + D where D is the 

diagonal matrix with d~i = 1/i, which is clearly greater than the norm of  A since 

both A and D are positive symmetric matrices. Let B be the lower triangular 

matrix defined by 

and observe that B B * = A + D = B + B * - D .  It follows that 

( I  - B)(I - B)* = I - O whence II / - B II ---< 1, and then II B II =< 2, 

II BB* II --< 4 and we have proved 

LEMMA 3. With A defined as above II A II -5 4. 

From here we see that with 2 < ~, the series Y.~ 2"A" converges in norm, and 
thus for any e > 0 there are indices i, j such that 

(,) ~ (~",4") 0 <e.  
1 

This last expression contains in particular, for any simple path from i to j ,  a 

term giving the probability that all edges in that path are connected. Thus the 

left-hand side of ( . )  is an upper bound for the probability that i is connected to 

j .  It follows that the probability that the graph is connected is less than e. Since 

e is arbitrary we have proved. 

PROPOSITION 4. For 2 < ~ the random graph described above is discon- 

nected with probability one. 



268 s. KALIKOW AND B. WEISS Isr. J. Math. 

While we are fairly certain that ¼ can be replaced by 1, what happens at the 
critical value 2 = 1 remains for us a mystery. 
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